Equivariant Kodaira Embedding for CR Manifolds with Circle Action

نویسندگان

چکیده

We consider a compact CR manifold with transversal locally free circle action endowed an S1-equivariant positive line bundle. prove that certain weighted Fourier–Szeg? kernel of the sections in high tensor powers admits full asymptotic expansion. As consequence, we establish equivariant Kodaira embedding theorem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An equivariant index formula for almost-CR manifolds

We consider a consider the case of a compact manifold M , together with the following data: the action of a compact Lie group H and a smooth H-invariant distribution E, such that the H-orbits are transverse to E. These data determine a natural equivariant differential form with generalized coefficients J (E,X) whose properties we describe. When E is equipped with a complex structure, we define ...

متن کامل

On Embedding Circle-bundles in Four-manifolds

In this paper, we demonstrate an obstruction to finding certain splittings of four-manifolds along sufficiently twisted circle bundles over Riemann surfaces, arising from Seiberg-Witten theory. These obstructions are used to show a non-splitting result for algebraic surfaces of general type.

متن کامل

Embedding 3-manifolds with Circle Actions in 4-space

We give constraints on the Seifert invariants of orientable 3-manifolds which admit fixed-point free circle actions and embed in R. In particular, the generalized Euler invariant ε of the orbit fibration is determined up to sign by the base orbifold B unless H1(M ;Z) is torsion free, in which case it can take at most one nonzero value (up to sign). No such manifold with base B = S2(α1, . . . , ...

متن کامل

Hirzebruch genera of manifolds equipped with a Hamiltonian circle action

Theorem 1. The Todd genus of a manifold equipped with a symplectic circle action with isolated fixed points is either equal to zero and then the action is non-Hamiltonian, or equal to one and then the action is Hamiltonian. Any symplectic circle action on a manifold with the positive Todd genus is Hamiltonian. Proof. A symplectic circle action is Hamiltonian if and only if there is such a conne...

متن کامل

Symplectic 4–manifolds with a Free Circle Action

Let M be a symplectic 4–manifold admitting a free circle action. In this paper we show that, modulo suitable subgroup separability assumptions, the orbit space N admits a fibration over the circle. The separability assumptions are known to hold in several cases: in particular, this result covers the case where N has vanishing Thurston norm, or is a graph manifold. Furthermore, combining this re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Michigan Mathematical Journal

سال: 2021

ISSN: ['0026-2285', '1945-2365']

DOI: https://doi.org/10.1307/mmj/1587628815